Field of Fractions
$Q$ : How do we go from $\mathbb{Z}$ to $\mathbb{Q}$ ?

$$
\begin{aligned}
& \frac{a}{b} \in \mathbb{Q} \Rightarrow a, b \in \mathbb{Z}, b \neq 0 \\
& \frac{a}{b}=\frac{c}{d} \Leftrightarrow a d-b c=0
\end{aligned}
$$

Hence $\mathbb{Q}=$ ordered pairs $(a, b)$ where
$y \quad a, b \in \mathbb{Z}$
give the same element
$2 \quad b \neq 0$
$3 \quad(a, b) \sim(c, d) \Leftrightarrow \quad a d-b c=0 \quad a b=O_{R}$ $b=O_{R}$
Definition Let $R$ be an integral danain.
We define the relation $\sim$ on $R \times\left(R,\left\{o_{R}\right\}\right)$ as follows:

$$
(a, b)-(c, d) \Leftrightarrow a d-b c=o_{R}
$$ domain

Proposition $\sim$ is an equivalence relation on $R \times(R \backslash\{q\}$,$) .$
Proof : Tedins exercise. $D_{0}$ it so you undurtand why $R$ must be an integral domain.

Field of Functions ot $R$
Definition $\operatorname{Frar}^{( }(R)=R \times\left(R \backslash\left(\sigma_{R}\right)\right)$
collection of equivalence dosses under

Notation : $[(a, b)]=\frac{a}{b} \longleftarrow$ usual Indtion notation

Examples Frac $(\mathbb{Z})=\mathbb{Q}$ squone brachet Cully

$$
\begin{aligned}
& \operatorname{Frac}(\mathbb{Z})=\mathbb{Q} \\
& \operatorname{Frac}\left(R\left[x_{1}, \ldots x_{n}\right\}\right)=R\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

Fact: Frac (R) is a field under the Following + and $x$

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}, \frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}
$$

Familian Propecties: $\quad a \quad 0_{\text {Frac }(R)} \Leftrightarrow a=o_{R}$
$1 \quad O_{\text {frac }(R)}=\frac{O_{R}}{6}$ for any $b \neq O_{R}$
$2 I_{\text {Frac }}(R)=\frac{I_{R}}{I_{R}}=\frac{b}{b}$ for ang $b \neq O_{R}$
$3-\left(\frac{a}{b}\right)=\frac{-a}{b}=\frac{a}{-b},\left(\frac{a}{b}\right)^{-1}=\frac{b}{a}$
$4 \quad \frac{a}{I_{k}}=\frac{c}{I_{R}} \Leftrightarrow a=c \quad \forall a, c \in R$ a field
$\Rightarrow \phi: R \longrightarrow$ Frac $(R)$ is an injeotive homomorphisen

$$
a \longrightarrow \frac{a}{l_{R}}
$$

シ
$R$ isomorphic to a subring of Frac (R)
5 $R$ a field $\Rightarrow \phi$ an isomouphisn so

$$
R \cong \text { Frac }(R)<\frac{a}{b}=\frac{\left(\frac{a}{b}\right)}{1 R}
$$

